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Abstract

Tomorrow’s large physics and astronomy projects will require to transport tremen-
dous amounts of data over long distances in near real time. Traditional TCP im-
plementations have severe problems in reaching the necessary performance. In the
recent past, researchers have shown that TCP implementations can be scaled to
achieve multi-gigabit per second speeds over high-bandwidth high-delay networks.
The ability of TCP to scale to high speeds opens possibilities for very large data
transfers over vast distances. We analyze here whether TCP can fulfill this task and
what problems we are faced with. We also examine TCP in the context of dedicated
links (Lambdas).
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1 Introduction

Many large physics and astronomy
projects that are coming online in
the next couple of years will require
tremendous amounts of bandwidth
over long distances[24]. Common
TCP implementations show many
problems when trying to achieve
good throughput in a high band-
width long delay environment. Fortu-
nately, network researchers have re-
cently shown that TCP implementa-
tions can be scaled to achieve multi-
gigabit per second speeds over high-

Email addresses: antony@nikhef.nl
(Antony Antony),
jblom@science.uva.nl (Johan
Blom), delaat@science.uva.nl (Cees
de Laat), JRLee@lbl.gov (Jason Lee).

bandwidth high-delay networks[8][3].
The ability of TCP to start scaling to
these high speeds opens possibilities
for large data transfers over long dis-
tances. Two factors make this a chal-
lenging problem. First, the distance
being traversed is greater than 6000
kilometers (which translates into a
packet delay greater than 100 ms).
Second, the desired throughput ex-
ceeds 1 Gigabit per second (Gbit/s).
The combination of these two fac-
tors is commonly called the Band-
width Delay Product (BDP), and
traversing networks with a large
BDP is known to be a difficult prob-
lem in networking[3]. In general it is
groups of network engineers or ”wiz-
ards” [13] working together to create
ideal conditions for TCP who have
achieved high bandwidth on these
links[20]. The problem with this is
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that most day to day situations do
not present such ideal conditions,
and the average user is not usually a
network wizard but perhaps a physi-
cist or an astronomer. In this paper
we show how and why TCP performs
so well under ideal situations and
what happens under less than ideal
conditions.

In this paper, we present the test re-
sults of various modifications to the
TCP algorithms and various host pa-
rameters to achieve good throughput
under non-ideal situations. We exam-
ine TCP in depth and try to explain
why TCP is more sensitive to par-
ticular conditions that arise in large
BDP networks and why one is more
likely, now than in the past, to experi-
ence these conditions in a day-to-day
usage. Then we analyze how far TCP
can scale, and explore what problems
this may cause in the future. The rest
of this paper is organized as follows.
In Section 2, we show related work on
different TCP implementations and
modified algorithms. In Section 3, we
show the experimental setups used in
the experiments described in section
6. In Section 4 we explore adapta-
tions to TCP that can be done, while
section 5 delves into the reasons why
current implementations experience
problems. Section 7 discusses the re-
sults. Finally, we present concluding
remarks in Section 8.

2 Related Work

Recently, the network research com-
munity has proposed changes to
TCP to help it cope with the latest
advances in networking. In this sec-
tion we first describe a new trend in
networking called lambda network-
ing. Then we give a brief overview of
standard TCP and its main variants.

2.1 Lambda Networking

A new paradigm in high-bandwidth
high-delay networking is the trend to-
wards provisioning end-to-end light
paths for sender, receiver pairs, called
Lambdas. Since Lambdas are end-to-
end paths, there should be little or no
cross traffic on the link; yet TCP of-
ten experiences “congestion signals”,
which cause TCP to under-utilize the
available bandwidth. It is important
for Lambda users to have a high aver-
age utilization of the path. Our tests
using current TCP algorithms show
that TCP needs to be able to over-
come this congestion on a Lambda
and fully utilize the network. If TCP
is not capable of this, users will often
turn to other more aggressive trans-
port protocols such as Tsunami [21]
or Sabul[22].

2.2 Standard TCP

Standard TCP is the RFC793 [14]
and RFC 2581 [15] compliant ver-
sion of the TCP stack. During the
initial start up phase (slow start),
TCP sends out two packets, and
for each packet acknowledgment re-
ceived, sends out two packets. This
exponentially increases the amount
of data being sent until reaching
either the capacity of the sending
host or the network capacity. TCP
assumes that it has reached this ca-
pacity when it does not receive an
acknowledgment for a packet. This
loss causes TCP to back off, which
is done by decreasing the number of
packets that can be in flight and go-
ing into congestion avoidance. The
standard formula for computing this
decrease is to multiply by 0.5 the
number of packets that are currently
unacknowledged. This is called the
Multiplicative Decrease (MD) and
the value of 0.5 cuts the number of
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packets in flight in half. TCP is now
in what is known as the congestion
avoidance phase, and will only send
more packets every RTT (Additive
Increase, AI). This effectively means
that when all outstanding packets
have been acknowledged, it will then
add one more packet to the number
of packets that can now be outstand-
ing. This is why TCP’s congestion
control is commonly referred to as
being an AIMD algorithm. TCP’s
response function w = 1.2/sqrt(p),
where p is the steady state drop
rate[25], is derived from the AIMD
parameters.

The problem with standard TCP
over very high BDP networks is that
the number of packets in flight can be
very large, and the time that it takes
to recover from a congestion event
is directly proportional to the BDP.
This means that TCP is not scale
invariant with respect to bandwidth.
For example, if we have a 200 ms
path, with a capacity of 1 Gbit/s,
and sh a congestion event, it will take
at least 28 minutes to recover from a
single congestion event (based on a
standard packet size of 1500 bytes).

2.3 TCP variants

HSTCP: High Speed TCP is an
enhancement to TCP’s congestion
avoidance algorithm that has been
recently proposed by Sally Floyd
[25]. HSTCP adjusts the AI and MD
parameters. HSTCP uses a table of
values based on the number of cur-
rently outstanding packets to figure
out what the AI and MD parameters
should be. The values for AI range
from 1 (standard TCP) to a high of
73 packets, and the range of MD is
from 0.5 (standard TCP) to a low
of 0.09. Consequently, when a con-
gestion event occurs over large BDP
networks, TCP does not drop back as

much and adds more than one packet
per RTT, thus recovering faster.

Scalable TCP: Instead of looking for
the best values for AI and MD for a
given network, scalable TCP [8] takes
the approach that MD should always
be .125 (reduce window by 1/8 on
congestion events). Also, instead of
doing an additive increase, it does a
multiplicative increase beyond a cer-
tain threshold. The multiplicative in-
crease is of 5% of the current con-
gestion window. This has the effect
of forcing TCP to always recover in
a fixed number of RTTs. In the ex-
ample above where we used a 200ms
link, Scalable TCP’s recovery time is
approximately 2.7 seconds.

Fast TCP: Fast TCP [23] modifies
what TCP considers to be a conges-
tion event by using queue delay com-
bined with packet loss to decide if it
should go into congestion avoidance.
It also includes modifications to the
TCP sender to pace out packets so
as to not overwhelm the network. Fi-
nally it makes some changes to con-
gestion avoidance so that it recov-
ers more quickly after a congestion
event.

3 Experimental Setup

In order to illustrate the behavior
of TCP on large BDP networks we
show results gathered in two net-
works with different characteristics.
These networks were chosen because
they met all the requirements for
large BDP networks: they are high-
bandwidth, high-latency networks
with end-to-end bandwidth provi-
sioned in excess of 1 Gbit/s (gigabit
Ethernet in STS-24) and a latency
greater than 100 ms. We had control
over the network path and the end
hosts, including the host hardware,
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kernels, and all routers along the
path. This allowed us to monitor in
depth the interactions of TCP with
each element of these testbeds, and
also gave us the ability to induce rate
limiting into the path and observe
its effects.

All the networks used in our tests
were over-provisioned, meaning that
the network could never be congested
simply by the output of the comput-
ers used for testing. As a result, for
there to be congestion on the links,
it would have to be artificially intro-
duced. Over-provisioned networks
are common; e.g. many Internet
backbones are over-provisioned, run-
ning at rates of 1 Gbit/s to 10 Gbit/s.

Our tests were conducted in two
testbeds depicted in Figure 1(a) and
Figure 1(b). The first network is
the DataTAG testbed [1], a transat-
lantic testbed that was created to
demonstrate the issues in connecting
Grids separated by great distances.
The DataTAG testbed spans over
6000 km, with an average round trip
time (RTT) of 120 ms. The network
backbone is constructed from an
STS-16, which provides 2.5 Gbit/s
of bandwidth between the two sites.
The hosts located in Europe are at
CERN [2] in Geneva, Switzerland,
and the hosts located in the U.S.
are at StarTAP [17] in Chicago.
This path is routed via SURFnet
Amsterdam, and is a Lambda (op-
tical, no routers in the middle) of
1 Gbit/s provisioned inside an OC192
(10 Gbit/s) link.

The second network is composed
of hosts located at NIKHEF and
SARA in Amsterdam, The Nether-
lands. The link crosses the Atlantic,
is “soft looped” at StarLight in a
Time Division Multiplexing (TDM)
switch, and returns to The Nether-
lands, for a total latency of 218 ms.
This latency is roughly double that

of the DataTAG testbed. This link
is also provisioned over an OC-192,
providing 10 Gbit/s of bandwidth.

Both paths are provisioned inside an
OC192 SONET wide area link inter-
connected via a TDM switch, Cisco
ONS 15454. In our setup it is possible
to provision an end-to-end light path
of various speeds such as 1 Gbit/s
or 622 Mbit/s. When the speed is
622 Mbit/s the path has a bottle-
neck at the TDM switch. The buffer
memory available at the bottleneck is
512 kBytes.

During our tests, these two testbeds
were isolated from all other traf-
fic, to rule out external influences
on the links or routers. Note that
the network diagrams in Fig 1(a)
and Fig 1(b) only show the physi-
cal path that the packets took and
do not depict connections between
these testbeds and external net-
works. They should not be taken as
complete diagrams of the DataTAG
and SURFnet networks.

The PCs used in the DataTAG
testbed were running the Linux ker-
nel version 2.4 with Net100 enhance-
ments [6] to allow instrumentation of
the TCP stack internals. The hard-
ware configuration of the PCs was:

• Dual Intel(R) XEON(TM) CPU
2.40 GHz with:
· 1 Gigabyte of memory
· PCI-X, 64 bits 66 MHz bus
· SysKonnect SK-NET Gigabit

Ethernet Adapter SK-9843 SX
· Intel(R) PRO/1000

These were set with the command
’sysctl -p’.

net.core.rmem max = 33554432
net.core.wmem max = 33554432
net.core.rmem default = 65536
net.core.wmem default = 65536
net.ipv4.tcp rmem = 4096 87380 33554432
net.ipv4.tcp wmem = 4096 65536 33554432
net.ipv4.tcp mem = 33554432 33554432 33554432
net.core.mod cong = 2800
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(a) Testbed 1: 121 ms
path

(b) Testbed 2: 218 ms
path

Fig. 1. Testbed setup.

net.core.low cong = 1000
net.core.no cong = 200
net.core.cong thresh = 2900
net.ipv4.route.flush = 1

In all of our tests the machines used
to drive the network were capable of
generating several Gbit/s, ensuring
that the end-hosts themselves would
never be the bottleneck. This is very
important, as the profiling of TCP in
cases where the end-host (including
the NIC) is the bottleneck, is vastly
different from cases where the net-
work is the bottleneck. In cases where
the end-host is the bottleneck, it ap-
pears to the TCP congestion control
algorithm that there is a consistently
congested network, even if there is
little or no actual congestion on the
link; TCP reacts by reducing its out-
put and offering low throughput to
the user, even if there is excess net-
work capacity.

4 TCP and Beyond

In this section we explore the pa-
rameters that can be modified to
optimize the throughput of TCP in
different networks using Lambdas or
not. On a large BDP path, chang-
ing the parameters of the AI and

MD

AI 1

2

1

3

1

4

1 28 19 14

2 14 9.25 7

4 7 6 3.5

8 2.5 4 1.25

16 1.25 0.5 0.625

Table 1
Recovery time for various AIMD Values
in minutes

MD algorithms has a dramatic effect
on the time to recover from a single
congestion event. In Table 1, we cal-
culate the theoretical time to recover
from a single congestion event on a
100 ms RTT link with a capacity
of 1 Gbit/s. These numbers can be
calculated for different paths by sim-
ply multiplying by the ratio of the
BDPs; e.g., on a path with twice the
latency you should just double the
times, and on a path with a capacity
of only 500 Mbit/s you should divide
the values in half. Of course, recov-
ering faster from a congestion event
improves the overall throughput (for
one application). Therefore, the abil-
ity to tune the parameters of the AI
and MD algorithms may help many
network applications. However, most
TCP implementations do not pro-
vide control over these parameters.
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Fig. 2. TCP response behavior to a severe congestion over 1 Gbit/s path: Throughput
vs Time.

In Figure 2 we plotted the response to
server congestion of three TCP vari-
ants: HSTCP, standard TCP, and
TCP with an AI of 256 packets. The
best response came from TCP with
an AI value of 256. Unfortunately,
this strategy has the side effect of
overshooting the capacity of the net-
work by a large number of packets,
causing massive retransmits and re-
stricting the overall bandwidth. It
also is very unfriendly to other users
of the link.

However, we believe that for future
end-to-end light path based networks
(Lambdas), it is essential to allow
some control over the values of AI
and MD. Ideally these values should
be controllable on a per flow basis,
perhaps based on source/destination
IP addresses and ports or some other
metrics (VLAN tagging, TOS, etc.).
The Net100[6] project is an example
of how to tune the AIMD parameters
for individual network flows. The
reason that these values need to be
controlled on a per flow basis is that
many of the modifications we are
talking about are not “fair” to other
users of the network, and therefore
need to be restricted to only certain
flows.

A major requirement for TCP is
fairness. Fairness is most relevant in
cases where several competing TCP
flows share the same network path
and the network has to merge this
traffic together. If one of the flows
does not back off, it can starve the
other flows. We acknowledge that
fairness is essential to prevent the
collapse of shared networks. Yet, on
Lambdas (end-to-end, single use,
isolated networks, where there is no
other traffic) there is a need to allow
users to quickly obtain and maintain
a high utilization of the network in
spite of spurious congestion events.
It should be noted that in none of
the tests are we testing TCP against
itself or other variants of TCP. We
are simply characterizing the behav-
ior of TCP and its variants in the
presence of congestion events.

5 Barriers to TCP

There are many reasons for users to
have trouble achieving gigabit per
second speeds across their networks.
Most of the reasons can be tracked
back to “congestion signals” in TCP.
What causes congestion signals in
TCP can be traced back to either
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cross traffic (as is encountered in the
Internet) or hardware problems. On
isolated network paths we often see
congestion from hardware. In this
section, we review TCP congestion
and then some of the sources of the
hardware problems.

5.1 TCP congestion

TCP congestion control as it is de-
scribed in RFC 2581 [15], is not tied
to a particular hardware architec-
ture or implementation, and it does
not take into account restrictions
that may be imposed by the network
on the flow. Such restrictions occur
because the network is composed of
scarce resources such as buffers in the
hosts, routers and network interface
cards (NICs). Once these resources
are oversubscribed, problems arise
such as the dropping of packets from
queues in routers (not to mention
QoS effects like Random Early Dis-
card and Weighted Random Early
Discard). Details of the protocol im-
plementation and end-host hardware
can also have a significant effect
on TCP’s performance. The perfor-
mance is influenced by factors such
as the inter-packet gap at physical
layers, which can in turn affect how
TCP interacts with itself and other
protocols as several flows are multi-
plexed together into a single channel
at a backbone router.

We have found that in practice the
main factors influencing the perfor-
mance of a TCP flow are the lower
layer characteristics. A flow has to
share the available resources on both
end systems as well as on all network
elements along the path. TCP imple-
mentations and network topologies
are the true limits of TCP, not the
protocol. The basic problem is that if
there is congestion on the network or
if TCP interprets an event as mean-

ing congestion, it becomes impossi-
ble to obtain even close to gigabit
speeds on paths where the RTT ex-
ceeds 80 ms. This is mostly due to
the congestion avoidance algorithm.
Even in cases where RTT is less than
80 ms, there are still many factors
which can adversely influence per-
formance. For example, the standard
timers on most operating systems
do not have fine enough granularity
to time out the packets correctly.
Thus, the input and output queues
on the NICs that handle multiple
flows by servicing interrupts at high
rates are usually approximations of
what the protocol requires. Details
needing careful attention are: host is-
sues (CPU, bus, memory), transmit
queues on NICs, interrupt modera-
tion on sender and receiver (reducing
the load arriving packets).

5.2 Hardware problems

The paradigm whereby the network
is seen as a black box, data goes
in one side and out the other side,
and all the complexity in between
(routers, switches, etc.) is transpar-
ent is simply wrong. This black box
paradigm has severe limitations in
high bandwidth high delay networks,
particularly with respect to the gran-
ularity of the timers. The TCP pro-
tocol is described in the context of
timers, and has a concept of timing
out packets based on timers. Thus,
the vision of the network and hosts
as black boxes fails, since they have
interactions that change the behav-
ior of packets while they are in tran-
sit. Exposing the host and network
internals is also difficult. Take for
example a high throughput infras-
tructure using two PCs separated by
a large RTT. Even assuming an ideal
network with no loss, the problem is
still hitting the end-hosts. Different
NICs perform differently, and how
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they burst (and buffer) out packets
has performance effects. If one end-
host can over-run the other host with
packets, performance suffers. There
is also the problem that if the host is
doing other activities such as compu-
tation or disk access, we can expect a
drop in TCP performance. Even if we
have extra CPU power, it only takes
a fraction of a second for the CPU
to be working on something else and
miss servicing the interrupt in time
to keep TCP flowing correctly.

6 Experiments

To validate how TCP reacts (i.e. its
response function) to congestion in
the network (i.e. a bottleneck link),
we took the two testbeds and ar-
tificially lowered the link capacity.
For both networks, we reduced the
maximum throughput of the link to
622 Mbit/s, while leaving the NICs
on the the host machines capable of
sending at 1 Gbit/s. This allowed
TCP to overrun the capacity of the
network, thereby showing how TCP
adjusts to use the available band-
width of the link. For all the tests
we reconfigured the host for optimal
performance on this link. In Figure
3(b) we show results for the physi-
cal topology of a series of tests with
standard TCP and varying streams
and window sizes.

All the streams cluster around a
30 Mbit/s throughput. This poor
performance occurs because, due to
perceived congestion, the streams are
unable to complete slow start. The
streams fall out of slow start early
in the transfer, giving each stream a
low throughput.

In examining each of the streams
throughput over time, we see that
their congestion windows never use

the buffer space allocated to them.
The reduction of the congestion win-
dow suggests that there is some form
of congestion on the link (the under-
provisioned link of 622 Mbit/s) and
that a single stream will never attain
and maintain good link utilization.
This is a common scenario on high-
speed WANs.

In the multi-stream runs, one can see
that the link is capable of support-
ing 16 concurrent flows, each with a
30 Mbit/s throughput, giving a to-
tal link utilization of 77 %, which is
much better than the 1 % achieved
with a single stream. Given this base-
line for TCP, we then tested how dif-
ferent TCP variants react to conges-
tion.

We ran several modified TCP stacks
(HSTCP, TCP with a large AI value)
on this network. The results were
surprising (see Fig 4(b)). Notice
that there are now severe oscillations
in the bandwidth. This is because
the TCP variants keep ramping up
their bandwidth until they reach the
NIC speed (1 Gbit/s) which then
overruns the link speed (622 Mbit/s)
and causes packet loss. Packet loss
in TCP is a congestion event which
causes TCP to back-off, enter con-
gestion avoidance and then start the
whole cycle again. The reason oscil-
lations are so severe in testbed 2 as
compared to testbed 1 is that the in-
put buffer on the ONS (see Fig 1(b))
is too small for the packet bursts
that come out of the NIC on the
sending host. In this example one
can see that each of the other modi-
fied TCP stacks also experiences the
same problem. Each of them reaches
link capacity and then experiences
packet loss and drops into congestion
avoidance phase (Fig. 4). After a
congestion event is received, it takes
almost 20 s for TCP to stabilize
its algorithm enough to try raising
the congestion window. During the
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Fig. 3. Throughput vs time over 622 Mbit/s bottleneck link.
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Fig. 4. TCP response behavior for a 622 Mbit/s path: Throughput vs Time.

pause between the congestion event
and the start of recovery, TCP has
to wait for all outstanding packets to
be acknowledged or for them to time
out. These retransmissions and time
outs cause very long pauses in the
data transfer.

The examples above point out some
of the flaws in TCP’s congestion
avoidance and recovery mechanisms.
They also show that while HSTCP
and TCP with an AI of 256 does not
make it worse, yet they also do not
address this issue. There is still work
to be done on scaling TCP to large
BDP networks where congestion is
present. The answer up to now has
always been to over-provision the

network, but in the future this may
not always be an option with 10
Gbit/s NICs coming on the market.

7 Using the Testbeds

In this section we analyze what is the
best set of parameters to use for each
testbed (i.e. the number of streams
and sending congestion window size)
and show that the best combination
is not always the most intuitive.

In cases where a single TCP stream is
unable to obtain the full bandwidth
of a link, using multiple streams can
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Fig. 5. Throughput vs. Number of streams vs Window size over 1 Gbit/s path

sometimes improve the situation.
There are two reasons for this. First,
the aggregate congestion window is
larger with several streams than with
a single stream. Second, in the case
of a spurious congestion event, only
one of the TCP streams is affected,
thus mitigating the consequences of
a congestion event to 1/N, where N
is the number of parallel streams.
The problem with this approach is
that it can often complicate the data
transfer itself. The sender has to frag-
ment the data across the streams,
and the receiver has to reassemble
them. All of this must be done with
user-level operating system calls, as
there is no support for this in current
TCP stacks. Several packages such
as Psockets [12] can help with this,
but these packages cannot eliminate
the overhead of fragmenting and re-
assembling the data, which can be-
come significant at gigabit speeds.

Not allocating a large enough buffer
for the sender’s congestion window
is a common problem in tuning sce-
narios. Figure 5(a) and Figure 5(b)
show that, in both testbeds, setting a
small TCP buffer for the window size
will prevent TCP from attaining full
utilization of the link. A buffer that
is too large can also lower TCP’s per-
formance, as well as wasting system

resources. In Figure 5(a) one can see
that as we continue to increase win-
dow buffer sizes, even after achieving
full bandwidth, TCP starts fluctuat-
ing and the bandwidth becomes less
steady. In Figure 5(b), this fluctua-
tion is less pronounced. The reason
for this is that the sender’s packet
bursts have been “spread out” by a
larger number of intervening routers,
which are designed to evenly pace
packets out.

In Figure 5(a) we can see that, in all
tests, simply having a window size
greater than 14 MBytes was sufficient
to saturate the link in Testbed 1; on
Testbed 2 a TCP window greater
than 29 MBytes had the same effect
as shown in Figure 5(b). Figure 6
shows the breakdown, by congestion
window size, of the average speed of
the individual streams on the two
testbeds. In the single stream case,
one can see that with a window size
of 14 MBytes on Testbed 1 (with
the 100 ms latency path) line speed
can be obtained (989 Mbit/s). On
Testbed 2 we do not achieve full
link utilization until the congestion
window reaches 32 MBytes. Given
that Testbed 2 has twice the latency
(and thus BDP) of Testbed 1, this
congestion window size (29 MBytes
plus TCP and Linux kernel overhead
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Fig. 6. Average throughput per/stream vs. TCP socket size over 1 Gbit/s path

and rounding) is just what we would
expect.

In Figure 7, we modified the ex-
periment performed for Figure 5 by
throttling the link from 1.25 Gbit/s
to 622 Mbit/s. Note that in Testbed
1, as soon as we have a congestion
window of 8 MBytes, we can fully
utilize the link, but unlike before,
adding more streams and/or growing
the congestion window does not help.
In fact, if we try to utilize 16 concur-
rent streams, we suffer a 20 % drop
in our link utilization. The reason for
this is that the sending host can send
faster than the bottleneck, thus each
of our streams is ramping up un-
til a congestion event occurs. When
this happens, the stream drops into
congestion avoidance, but its burst
has caused a congestion event on the
other streams, causing them to drop
into congestion avoidance, which re-
sults in an overall lower throughput
for all the streams.

We have further detailed the results
for a varying number of streams in
Figure 3(a) and Figure 3(b). Fig-
ure 3(a) shows a fairly consistent
pattern. With one stream we can at-
tain a bandwidth of approximately
592 Mbit/s, i.e. a link utilization in
excess of 95 %! With two streams,

each of the streams is able to reach
about 300 Mbit/s, again an amaz-
ing utilization of the link. In Figure
3(b), however, one notices that the
pattern seen in Testbed 1 is miss-
ing. Instead we have a much more
chaotic representation of the data.
A single stream never reaches more
than 60 Mbit/s, i.e. only 10 % uti-
lization, and on average all streams
are only capable of reaching a band-
width of about 40 Mbit/s no matter
what their congestion window size
is. In this case it is only possible to
get full link utilization by using all
16 streams.

8 Conclusion

In this paper we have shown that
TCP is not intrinsically limited by its
congestion control algorithms, but
rather by its implementations. We
showed that there are ways to scale
TCP for large BDP networks, and
described what problems can arise
while doing this. We have exam-
ined the properties of end-hosts and
the characteristics of the networks
and showed how these can influence
TCP’s behavior. We have also ex-
plained that TCP can be adapted
to scale to large BDP networks with
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Fig. 7. Throughput vs time over 622 Mbit/s bottleneck link.

a minor amount of tuning. We also
showed cases where it is necessary
to have explicit control over TCP
parameters to increase the average
utilization of the path or alterna-
tively substitute a better congestion
control algorithm suitable for both
shared networks and light paths.

Further research is needed to look at
asymmetric cases. There is still lit-
tle work done in trying to maximize
throughput when interoperating be-
tween NICs of different speeds over
high bandwidth delay product net-
works; e.g., a 10 Gbps host as sender
and 1 Gbit/s host as a receiver.
Another area of interest is where a
10 Gbit/s host sends to a 1 Gbit/s
host which already has some back-
ground traffic. In both cases, it would
be interesting to explore what value
of AI MD would optimize the good-
put.
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